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Avramov, Milchev, and Argyrakis [Phys. Rev. E 47, 2303 (1993)] have investigated the mean-
square displacements of particles that perform random walks in two- and three-dimensional lattices
with random barriers with uniform distributions of activation energies. They discussed the crossover
between anomalous and normal diffusion, but they did not analyze the behavior of the mean-square
displacements at long times where normal diffusion occurs. We point out that the asymptotic
diffusion coefficients are well described by the effective-medium theory in the range of parameters
investigated; they are in disagreement with the predictions of critical-path arguments in dimension

d=3.
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Recently, Avramov, Milchev, and Argyrakis [1] inves-
tigated the random-barrier model for particle diffusion
in two and three dimensions by numerical simulations.
They used uniform distributions of activation energies
and the Arrhenius law to convert the activation energies
into transition rates. By varying the ratio a between
the temperature and the largest activation energy dif-
ferent ranges of the transition rates could be explored.
The major point of the paper was the elucidation of
the crossover from subdiffusive behavior at intermediate
times to normal diffusion at long times. We agree fully
with this analysis, which showed that the crossover is
determined by percolation arguments. However, the au-
thors did not analyze the diffusion coefficients that can
be obtained from their simulations. In this Brief Report
we will make such an analysis and we will point out that
their asymptotic diffusion coefficients are well described
by the effective-medium theory. For the parameter range
that was investigated, their results are in disagreement
with the predictions of (naive) critical-path arguments.

The effective-medium theory for hopping transport in
the random-barrier model was formulated by several au-
thors [2-4]. In the static limit the self-consistency con-
dition for the effective hopping rates I'eg reduces to one
that was already derived by Kirkpatrick for the random-
resistor problem [5]
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The curly brackets indicate the average over the distri-
bution of the transition rates I'. This self-consistency
condition was evaluated by Bernasconi [6] for a uniform
distribution of activation energies between F = 0 and
E = FE.. The result for d > 2 is

Iy 1-—exp(’zd)
d—1 exp(g)—1"~

(2)

Feﬁ' =

where @ = kT /E.. Extensions of the result to other
intervals of the energy are also possible. For fixed di-
mension d and small parameter a the expression reduces
to

To 1
Pup — -0 exp (—a) . 3)
This expression should be compared with the result of
the critical-path approach [7,6]

Feg = Toexp (——%) s (4)

where p. is the threshold for bond percolation [8]. Both
expressions agree in d = 2 where p. = 0.5; in d = 3 there
appears a difference since p, =~ 0.242.

We generated our own Monte Carlo data on the mean-
square displacements; they are in full agreement with the
data of Avramov, Milchev, and Argyrakis [1]. Moreover,
we also determined the mobility by applying small uni-
form bias fields in one lattice direction. Table I shows
our results for the asymptotic diffusion coefficients, to-
gether with the predictions of the effective-medium the-
ory (EMT) and the critical-path approach for d = 3. For
these a values the data are well accounted for by the
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TABLE I. Comparison of diffusion coefficients and mobil-
ity obtained by different methods in d = 3. The quantities
are given in units of 6.

Critical-path{ Mean-square

a' EMT

approach displacement Mobility
1 0.1025 0.1308 0.103 0.1
0.5 0.06475 0.1027 0.0642 0.0629
0.2 0.01871 0.04970 0.0209 0.0166
0.1 0.003079 0.01482 0.00273 0.00143

effective-medium theory. As said above, in d = 2 the
critical-path approach gives results identical to those of
the EMT, which agree with the simulations, but in d=3
the data differ considerably from the critical-path expres-
sion. For smaller o values no reliable determination of
the diffusion coefficient or the mobility was possible.

It is no surprise that the effective-medium theory is
valid for o values down to about 0.1. Luck [9] studied

the validity of the effective-medium theory by comparing
it with exact perturbation expansions. He found that a
difference appears in d = 3 in the fourth order of the per-
turbation theory, and the relevant parameter is a second
moment p, which is approximately 1/a? for small a.
The difference is proportional to uZ in the fourth order
and it is about 4.5% at o = 0.1. The difference grows
then ~ a~* for smaller o values.

Corrections to the naive critical path prediction have
been considered by Tyc and Halperin [10] and Le Doussal
[11], which are of the form (a)¥ with an exponent y that
is not precisely known in d = 3. Using the two proposed
exponents of Ref. [10] we find improvement of the pre-
dictions, but the agreement with our data is not as good
as for the EMT. We point out that it is necessary to in-
vestigate much smaller values of the parameter o when
the critical-path expression is put to a test. This would
then also require the application of numerical methods
that are appropriate for the static limit.
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